110

Content list available at ITC

Techno-Science Research Journal

Journal Homepage: www.itc.edu.kh

Techno-Science
Research
Journal

Using Cache to Optimize Question Wave Social Search Agents

Sethserey Sam'", Albert Tries i Mansilla®, JosepLluis de la Rosa i Esteva’

!Computer Science Department, Institute of Technology of Cambodia, BP 86, Bvd. Pochentong, Phnom Penh, Cambodia
“SingaporeAgents Research Lab, TECNIO Centre EASY, University of Girona, Campus de Montilivi, E17071 Girona,
Catalonia (EU)

Abstract: This paper presents about our research in social search. Generally, the research in social search falls into two principal
challenges. The first challenge is how to find more relevant answers to the question. The second one is how to increase speed in finding
relevant answers. Recently, we had provided an algorithm called Question Waves (QW) to find more relevant answers compared to the
baseline algorithmbreadth-first search(BFS). But, the search speed of the proposed algorithm still the subject to improve.in this paper, we
introduce the agents’ ability of learning the answers from the interactions with other agents so that they can quickly answer the question of
other agents. We model this learning process by implementing the concept of data caching as the short-term memory of each social search
agent. The result improvement of the speediness and the reduction of the number of messages used to communicate between agents, after
apply agent's short-term memory concept, demonstrates the usefulness of the proposed approach.

Keywords:Social search; query routin; BFS; Question Waves; LRU Cache

1. INTRODUCTION

Conventional methods to find relevant information,
such as Web search engines, have some problems
accessing content that it is not indexable, which is known
as the deep Web. In 2001, the content of the deep Web was
estimated to be between 400 and 550 times greater than the
visible Web (Mansilla and Esteva, 2011). Although the
search engines have been progressively personalized and
made more contexts aware, they are less effective for
typical searches (Banerjee and Basu, 2008), and their
results relevance is reduced by the effects of search engine
optimization (SEO). Content generated by users often
belongs to the deep Web because its access is restricted by
the managers of a social network and also because
sometimes users only have access granted to a content
portion, as is the case of online social networks, in which

*Coresponding authors:
E-mail: sam.sethserey@itc.edu.kh; Tel: +855-12-509-383;
Fax: +855-23-880-369

users can restrict the information accessibility to their
acquaintances. Additionally, social network popularity is
increasing; as an example, Facebook had 840 million
active users at the end of 2011.

Although search engines provide fast results, they
usually provide a large list of documents in which the
desired information can be found, but there is not much
help with searching through the list of documents
provided. In that vein, Smyth et al. (2009) note that 70% of
the time users are searching for information previously
found by their friends or colleagues. For these reasons,
there are recently developed tools, such as HeyStacks
(Smyth et al., 2009) or the +1 button of Google, that
contribute to the sharing of interesting results.

Considering social search, query-routing has been
applied to several domains, such as Internet browsers (Wu
et al., 2007), question answering (Banerjee and Basu,
2008) and recommender systems (Walter et al., 2007). The
classification of the query-routing algorithms used in those
domains is based on if the algorithms are unicast or
multicast. In unicast query-routing algorithms, a query is

24

only sent to one acquaintance or user (Banerjee and Basu,
2008), while multicast algorithms are ones in which a
query is sent to many of them (Wu et al., 2007; Mansilla
and Esteva, 2011 and Walter et al., 2011).

Recently, we had proposed an algorithm in social
search using search agents called "Question Waves" (QW)
(Manilla and Esteva, 2011). QW does not only improve
significantly the number of relevance answers compare to
the generic Breadth-First Search (BFS) (Wu et al., 2007)
but also reduces notably the number of exchange
messages, which caused perturbing of searching process,
between agents.

However, based on our recent experiments, QW did
not give a promising speed to social search as BFS. The
reason of this decrease of the speed is because QW
introduce messages delay (the algorithms increase the
scalability, but the time needed to satisfy a question is also
increased).

To overcome this bottle-neck, we propose to provide
agents the ability of learning from the answers received,
and using a short-term memory model implemented as an
embedded cache memory for each agent, so each agent can
get the answer from their cache or from their closest friend
cache quickly.

Section 2 explains our framework and a brief literature
review of the two social search algorithms that we will
consider in our experiments including BFS and QW. In
Section 3, principles of agent's short-term memory are
presented. In Section 4, simulations data is described.
InSection 5, we show our experiment results. Finally, in
Section 6, the conclusions and future work are presented.

2. FRAMWORK

In this paper we assume that there is an unstructured
P2P social network of agents, where each agent represents
its owner. The contact list of each agent consists of the
agents owned by the people in the contact list of its owner.
We assume that each user has only one agent, and that
each agent only represents one user.

When a user ui has an information need, she requests
it to her agent ai. The agent ai first will check its
knowledge base, if it can satisfy the information of its
owner it will do it and finish its task. Otherwise the agent
will send the question to a subset of its contact list, and
each of the agents that receive the message can ignore it,
answer it with their knowledge base, show the question to
its owner with the aim that she answers, or forward the
question to a subset of its contacts (in such case the
process continues, as the new receivers can perform the
same tasks).

For each question, the agents can play three roles:

e Questioner: The questioner is the agent who
started the question.

e Answerer: An answerer is an agent who
answers a question with the agent’s own
knowledge or its user’s knowledge.

e Mediator: A mediator is an agent who
receives a question and forwards it to others.
They also may forward an answer that they
receive from another mediator or an answerer.

As data, We used the same data as described in
(Manilla and Esteva, 2011) that consist on a movielens
data set modified.

Collaborative Filtering Recommender Systems data, is
adequate for social search simulation, as this recommender
systems can be seen as Social Feedback Systems (Chi,
2009).

Collaborative filtering (CF) is used to recommend
items that similar users have liked. CF is based on the
social practice of exchange opinions. In the 1990s,
GroupLens worked with this family of algorithms
(Konstan et al., 2005; Resnick et al., 1994) leading a
research line on recommender systems that expanded
globally because of growing interest in the Internet.
Usually, these systems rate items between 1 and 5.
Pearson's correlation (Resnick et al., 1994; Shardanand and
Maes, 1995) can be used to measure the similarity between
users (Eq. 1).

u(t,v) M
Yiem(rei —) (1, — 1)

\/Zielm(rt,i - ﬁ)z Yiel(roi — 7717)2

Where
o u(t,v)is the similarity of users u, and u,,.

e r1;is the rating given by user uto item im;.
e [m is the set of items.

e 7;is the mean of the ratings of user u,.

The item im; rating (73, j) can be predicted with Eq.
11. In this equation, the constant K is used to match the
prediction within the range of values.

_ _)
Tl',]' =n + K Z ul-yk(rk'j - Tk)

Tk,j| ki

Milgram’s experiments (Milgram, 1969), which were
carried out in 1960s, consisted in a set of participants
where each one was requested to deliver a document to a
different target person. In case that the participant knew
the target, she should send directly the document,

25

otherwise she must send the document to someone more
likely to deliver the document to the target person. The
number of participants was 296, the 73% of which
followed the instructions. Each time the document was
forwarded there was a probability that the receiver drops it.
As result 64 folders reached their target person.

Under our point of view, Milgram’s experiments can
be considered as the basis of query-routing in unstructured
p2p social networks. P2P query-routing algorithms can be
classified as unicast and multicast. In the case of unicast
query-routing, each requester sends the query to one and
only one candidate. In the case of multi-cast it is sent to
more candidates, and many algorithms uses as candidates
all the acquaintances.

The Social Query Model (SQM) (Banerjee and Basu,
2008), allows a better understanding of unicast query-
routing. The SQM is a probabilistic model that indicates
the probability of obtaining a relevant answer. SQM is
represented in equation 1 and considers the following
parameters:

e The expertise e; € [0,1] indicates the probability
that the node «; answers a query, with a
probability 1- ¢; that the node a; forwards the
query.

e The correctness w; € [0,1] indicates the probability
that the answer provided by the node a; is correct.

e The response rate 7;; € [0,1] indicates the
probability that a node a; accepts a query from
node a;. The probability that a node a; drops the
query is then 1-7;;.

e The policy T; of a node a; is a probability
distribution that indicates the probability of
selecting neighbours of a; (N;) when a; decides to

forward a query; concretely, each Tr]i indicates the
probability that a; forwards the query to a;.

‘ Py = wie; + (1 — €) Xie, ”Ji USL NS

What we can extract from SQM and Milgram’s
paradigm is that although it is possible to find a target
person (that in the case of social search would be someone
able to provide a relevant answer), the probability of
finding it is really affected by r;;andw; Furthermore if
someone drops the query the answer will not be found, and
the requester will not know that the search process has
been stopped. In the case of multi-cast query routing,
where the requester and each candidate can sent the
request to many candidates, when someone drops the
query the process continue.

The most usual multicast query-routing algorithm is
the Breadth First Search (BFS) or flooding, it has been
used for example in (Wu et al., 2007; Walter et al., 2007).
In BFS the requester send the question to all her

acquaintances. The receivers of the message answers or
forward the question to all their acquaintances. BFS has a
higher probability of answering the question, and will
answer it faster, but requires a high number of messages
that threaten the system scalability. With the aim to limit
the query propagation, BFS often uses the Time-To-Live
(TTL). TTL is initialized to certain value that indicates the
maximum number of hopes, each time that a question
message is forwarded the TTL value is decreased by one,
and when its value is 0 it cannot be forwarded.

Recently we proposed the algorithm Question Waves
(QW) (Manilla and Esteva, 2011). The idea of QW is
introducing a delaying inversely proportional to the
probability that the acquaintance will find the answer, the
agents with a high probability of satisfying the information
need will be requested as fast as possible, while the
acquaintances with a low probability will be requested
after a high delay. In QW each question message
corresponds to an attempt of satisfying the information
need. QW also introduces other mechanisms as delays in
the answers with the aim to allow that further and better
answers arrive first. QW not only reduces the number of
messages, its main property is that the answers arrive
sorted by relevance, or probability of satisfying the
information need.

One of the drawbacks of QW is that the addition of
delays can increment the time needed to satisfy the
information need.

To overcome this bottle-neck, we propose to provide
agents the ability of learning from the answers received,
and using a short-term memory model implemented as an
embedded cache memory for each agent, so each agent can
get the answer from their cache or from their closest friend
cache quickly. The detail of the proposed approach is
detailed in the following section.

aem | B O O
ED ég@—’@

a. without short-term memory b. with short-term memory

Fig. 1. Example of agent with and without short-term
memory

26

Input Content of LRU Cache

A A |

B [A]B

c LA C
D [B[cCc[D
C LB |D|C
A

Fig. 2.An example demonstrating the LRU element
replacement algorithm

3. USING CACHE AS AGENT’S SHORT-TERM
MEMORY

3.1. Using LRU Cache as Short-term Memory

In the previous studies (BFS (Wu et al., 2007) and
Question Waves (Mansilla and Esteva, 2007); the answer
stored only in the answerers so when several agents
request the same question, they need to get the answer only
from those answerers. This principle makes the social
search slower due to query-routing duration to get the
answer.

To solve this problem, we embedded a short-term
memory to each agent. So when an agent receives an
answer which is not in its knowledge base, it will add this
answer to its short-term memory; and the agent can reuse
the answer when a related question is received. The
process, that each agent access to its short-term memory
will be detailed in section 3.2.

Figure l.a and 1.b illustrate the example of search
agent without and with short-term memory respectively.
We suppose that:

e agent D has the answer of question Q1.

e at first, agent B asked question Q1.

e later, the question Q1 was also asked by agent
A.

e the access duration from one agent to another
closed agent is T.

No
send answer to
questionner

Question obiain
O answer from
KB
Torward guestion
10 next agents

Fig. 3. The answer retrieving process of search agent
without short-term memory

Question

send answer 1o

cuestionner

obtain
answer from
KB

forward question
0 next agents

Fig. 4. The answer retrieving process of search agent with
short-term memory

In the case without short-term memory (Figure 1.a),
agent B and A spends 4T and 6T respectively. So the total
access duration to answer the two questions from A and B
is 10T. In the case with short-term memory, agent B
spends 4T. During the answer transferring, the answer was
stored to the short-term memory of agent C and B. So
agent A spends only 2T since the answer of agent D was
learned by agent B’s and it is stored in its short-term
memory. Thus, the agent with short-term memory help
reducing 40% of access duration compared with agent
without short-term memory.

The principle of the search agent's short-term memory
is based on the basic and useful cache technic called least
recently used cache (LRU Cache). The LRU cache evicts
the element that was accessed least recently when the
cache is full. Figure 2 illustrates the process of LRU
Cache.

The rationale for choosing the least recently used
element is, if an element has not been accessed in a while
then it may not be accessed again, based in the principle of
temporal locality. Each time an element is accessed we
check if it is in the queue and remove it and place it at the
back of the queue. Therefore, the least recently used
element is always at the front of the queue. We consider
that has sense to implement the short-term memory as a
cache LRU, as the items accessed are refreshed by the
agent, and the ones that are not in use at the end are
forgotten.

In the social search case, a cache element could be
composed of:

e aquestion

e an answer

e an answerer (an agent who answered the
question)

e question effort

e date of answer

3.2. Agent’s Answer Retrieving Process

When a question arrived, the ordinary search agent
will look in its knowledge base (KB). If it did not find the
answer, then it forwards the question to other agents. But if
it find the answer, agent needs to decide whether to send
its answer only (high confidence case); or to send its
answer and also forward the question to other agents (low

27

confidence case). Figure 3 illustrates the answer retrieving
process of the agent without short-term memory.

In the case that we embedded a cache to each agent,
the process to retrieve the answer will be illustrated as
Figure 4. The process is slidely different from the agent
without cache. The answer will retrieve from the cache
only when there is no answer in the agent’s knowledge
base or the agent did not confident in its answer.

It is important to mention that a question composed of
two parameters: question value and questioner id. An
answer composed of four parameters: question value,
answer value, answerer id and confidential level of the
answerer.

On the other hand, when an agent using cache receives
an answer, it will put the answer to the cache before
transferring the answer to other agents.

4. SIMULATION DATA

For our simulations we used the same data that in BFS
(Wu et al.,, 2007) and(Mansilla and Esteva, 2007), it
contains 19,463 questions distributed in 387 users.

e Questions are distributed randomly between
the steps 1 and 1,000 of simulation.

o All of the simulations end at step 2,000.

e We execute 20 instances of each
configuration.

5. RESULTS AND DISCUSSION

The results that we consider that should be analyzed
are the number of messages, the time needed to close an
answer, the precision and the recall. Figure 5 shows the
time needed to close an answer. Figure 6 shows the effects
of applying the short term memory in the scalability, we
can see that it reduces the number of messages; also we
can see that the algorithms that have a higher increase of
the scalability are the algorithms that use SM. Finally
Figure 7 shows the precision and the recall.

We can observe that applying a cache reduces more
the time needed to close an answer and the number of
messages for both BSF and QW. Meanwhile, we observed
that BFS has a high drop of answer relevance using short
termmemory. In the other hand, QW has a small loss of
answer relevance in recall when cache is applied.

6. CONCLUSIONS

45

40
e \"'—‘

30

—— W

——BFS

Time needed to close

] 500 1000 1500 2000 2500
Cache size (0 means no cache)

Fig.5.Time needed (in simulation steps) to close an answer
in function of cache size

30000000

25000000

20000000 \K‘_g

v + + +

15000000 - —4—Qaw
—=—BF5

10000000 -1

5000000 -

Number of messages 10°

0 +

® Cache size (0 means no cache)

Fig.6.Number of messages generated in function of cache
size

6000

5000

3000 \-_ ——Qaw

—w—BFS

Relevance

2000 -

1000

[+] 500 1000 1500 2000 2500
Cache size (0 means no cache)

Fig.7.Answer relevance in function of cache size

From our experiments we can obtain that using short-
term memory in agents reduces the time needed to satisfy
aninformation need, and at the same time reduces the
number of messages needed. But in the case of the
algorithm BSF, there is a considerable reduction of the
answer relevance.

28

In the case of QW the decrease of relevance is small.
We consider that if the small loss of relevance is
acceptable it should be better to use the cache for QW.

REFERENCES

Banerjee, A. and Basu, S.,(2008).“A social query model
for decentralized search,” in ... of the 2nd
Workshop on Social.

Chi, E. H., “Information Seecking Can Be Social,”
Computer, vol. 42, no. 3, pp. 4246, (2009).

King, W., 1971.“Analysis of Paging Algorithms,” in
Congress, pp. 485-490.

Konstan, J. A., Kapoor, N., Mcnee, S. M., and ButlerJ. T.,
2005.“TechLens: Exploring the Use of
Recommenders to Support Users of Digital
Libraries,” no. May.

Mansilla, A. T. I and Esteva,J. L. De La Rosa I,
(2011).“Asknext: An agent protocol for social
search,” Information Sciences, vol. 190, no. 0, pp.
144-161,.

Mansilla, A. T. I and Esteva,J. L. De La Rosa I, (2011).
“Propagation of Question Waves by Means of
Trust in a Social Network,” in Flexible Query
Answering Systems SE - 17, vol. 7022, pp. 186—
197.

Mansilla, A. T. I and Esteva,J. L. De La Rosa I, “Question
Waves: an algorithm that combines answer
relevance with speediness in social search,”
Information Sciences (under review).

Resnick, P., TacovouN., Suchak, M., BergstromP., and
RiedlJ., (1994).“GroupLens : An Open
Architecture for Collaborative Filtering of
Netnews,” in Proceedings of the ACM conference
on Computer supported cooperative work, vol. pp,
no. 1, pp. 175-186.

Shardanand, U. and Maes, P., (1995). “Social information
filtering: algorithms for automating “word of
mouth,” in Proceedings of the ACM Conference
on Human Factors in Computing Systems, vol. 1,
pp. 210-217.

Smyth,B., Briggs,P., CoyleM., and O’MahonyM.,(2009).
“Google Shared. A Case-Study in Social Search,”
in User Modeling, Adaptation, and Personalization
SE - 27, vol. 5535, G.-J. Houben, G. McCalla, F.
Pianesi, and M. Zancanaro, Eds. Springer Berlin
Heidelberg, pp. 283-294.

Walter,F. E., Battiston,S., and Schweitzer,F., (Oct. 2007).

“A model of a trust-based recommendation system on a
social network,” Autonomous Agents and Multi-
Agent Systems, vol. 16, no. 1, pp. 57-74.

Travers,J. and Milgram,S., (1969).“An Experimental Study
of the Small World Problem,” Sociometry, vol. 32,
no. 4, pp. 425-443.

Wu,L.-S., Akavipat,R., Maguitman,A. G., and Menczer,F.,
(2007).“Adaptive peer to peer social networks for
distributed content based web search,” in Social
Information Retrieval = Systems: Emergent
Technologies and Applications for Searching the
Web Effectively, D. Goh and S. Foo, Eds. IGI
Global, pp. 155-178.

29

