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only sent to one acquaintance or user (Banerjee and Basu, 
2008), while multicast algorithms are ones in which a 
query is sent to many of them (Wu et al., 2007; Mansilla 
and Esteva, 2011 and Walter et al., 2011). 

Recently, we had proposed an algorithm in social 
search using search agents called "Question Waves" (QW) 
(Manilla and Esteva, 2011). QW does not only improve 
significantly the number of relevance answers compare to 
the generic Breadth-First Search (BFS) (Wu et al., 2007) 
but also reduces notably the number of exchange 
messages, which caused perturbing of searching process, 
between agents.  

However, based on our recent experiments, QW did 
not give a promising speed to social search as BFS. The 
reason of this decrease of the speed is because QW 
introduce messages delay (the algorithms increase the 
scalability, but the time needed to satisfy a question is also 
increased).  

To overcome this bottle-neck, we propose to provide 
agents the ability of learning from the answers received, 
and using a short-term memory model implemented as an 
embedded cache memory for each agent, so each agent can 
get the answer from their cache or from their closest friend 
cache quickly. 

Section 2 explains our framework and a brief literature 
review of the two social search algorithms that we will 
consider in our experiments including BFS and QW. In 
Section 3, principles of agent's short-term memory are 
presented. In Section 4, simulations data is described. 
InSection 5, we show our experiment results. Finally, in 
Section 6, the conclusions and future work are presented. 
 
 
2. FRAMWORK 
 

In this paper we assume that there is an unstructured 
P2P social network of agents, where each agent represents 
its owner. The contact list of each agent consists of the 
agents owned by the people in the contact list of its owner. 
We assume that each user has only one agent, and that 
each agent only represents one user. 

When a user ui has an information need, she requests 
it to her agent ai. The agent ai first will check its 
knowledge base, if it can satisfy the information of its 
owner it will do it and finish its task. Otherwise the agent 
will send the question to a subset of its contact list, and 
each of the agents that receive the message can ignore it, 
answer it with their knowledge base, show the question to 
its owner with the aim that she answers, or forward the 
question to a subset of its contacts (in such case the 
process continues, as the new receivers can perform the 
same tasks). 

For each question, the agents can play three roles: 
 Questioner: The questioner is the agent who 

started the question. 

 Answerer: An answerer is an agent who 
answers a question with the agent’s own 
knowledge or its user’s knowledge. 

 Mediator: A mediator is an agent who 
receives a question and forwards it to others. 
They also may forward an answer that they 
receive from another mediator or an answerer. 

As data, We used the same data as described in 
(Manilla and Esteva, 2011) that consist on a movielens 
data set modified. 

Collaborative Filtering Recommender Systems data, is 
adequate for social search simulation, as this recommender 
systems can be seen as Social Feedback Systems (Chi, 
2009). 

Collaborative filtering (CF) is used to recommend 
items that similar users have liked. CF is based on the 
social practice of exchange opinions. In the 1990s, 
GroupLens worked with this family of algorithms 
(Konstan et al., 2005; Resnick et al., 1994) leading a 
research line on recommender systems that expanded 
globally because of growing interest in the Internet. 
Usually, these systems rate items between 1 and 5. 
Pearson's correlation (Resnick et al., 1994; Shardanand and 
Maes, 1995) can be used to measure the similarity between 
users (Eq. 1). 

 

,
∑ , ,∈

∑ , ∑ ,∈∈

 

(1) 

 

Where 
 , is the similarity of users ut and uv. 

 rt,iis the rating given by user utto item imi. 

 Im is the set of items. 

 is the mean of the ratings of  user ut. 
 

The item imj rating ( , 	can be predicted with Eq. 
11. In this equation, the constant K is used to match the 
prediction within the range of values. 
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Milgram’s experiments (Milgram, 1969), which were 

carried out in 1960s, consisted in a set of participants 
where each one was requested to deliver a document to a 
different target person. In case that the participant knew 
the target, she should send directly the document, 
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In the case of QW the decrease of relevance is small. 
We consider that if the small loss of relevance is 
acceptable it should be better to use the cache for QW. 
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